

Numerical and Semi-Analytical Methods for Micromechanical Modeling of Piezoelectric Polymer Composites and Nanocomposites for Thin Film Applications **Neelam Mishra*1 and Kaushik Das1**

						M	otiva	atio	n					
	 Multifunctional materials such as Piezoelectric Polymer Nanoc the properties of polymers such as light weight, flexibility with piezoceramics such as high electromechanical coupling to form for applications in micro and nano sensors, actuators as well as and nanodevices. The effective properties of polymer nanocomposites are greatly properties of the individual constituents. Modeling and simulation plays an important role in predicting material properties, and guiding experimental work such as syn characterization. 													
						Ob	ojec	tive						
	 To calculate the effective elastic, piezoelectric and dielectric piezoelectric polymer composites and nanocomposites using a finite element methods. To study the effect of critical parameters such as volume fract orientation, distribution, matrix-reinforcement interphase on the electroelastic properties of piezoelectric polymer composites and provide the electroelastic properties of piezoelectric polymer composites and provide the electroelastic properties of piezoelectric polymer composites and provide the electroelastic properties of piezoelectric polymer composites and provide the electroelastic properties of piezoelectric polymer composites and provide the piezoelectric polymer composites and provide the electroelastic properties of piezoelectric polymer composites and provide the piezoelectric polymer composites and piezoelectric piezoelectric													
						T	heo	ry						
• V f e	• The governing equation of piezoelectricity Divergence equations $\sigma_{ij,j} = 0$ $D_{i,i} = 0$ Constitutive Equations $\sigma_{ij} = C_{ijmn} \varepsilon_{mn} + e_{nij} (-E_n)$ $D_i = e_{imn} \varepsilon_{mn} - k_{in} (-E_n)$ Gradient Equations $\varepsilon_{mn} = \frac{1}{2} (u_{m,n} + u_{n,m})$ $E_n = -\phi_n$ where, $\sigma_{ij}, \varepsilon_{mn}, C_{ijmn}, e_{nij}, E_n, D_n, u_{ij}, \phi_n, k_{ij}$ are the solution of the electric field, electric displaced electric potential and dielectric moduli. Material Properties													
	$\sum_{Material}$ =				$ \begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ e_{31} \end{bmatrix} $	C_{12} C_{22} C_{23} 0 0 0 0 0 e_{32}	$C_{13} \\ C_{23} \\ C_{33} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ e_{33}$	$ \begin{array}{c} 0\\ 0\\ 0\\ C_{44}\\ 0\\ 0\\ 0\\ e_{24}\\ 0\\ \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ e_{15}\\ 0\\ -k_{11}\\ 0\\ 0\\ \end{array} $	$ \begin{array}{c} 0\\ 0\\ 0\\ e_{24}\\ 0\\ 0\\ -k_{22}\\ 0 \end{array} $		
N	laterial	C ₁₁ (GPa)	C ₁₂ (GPa)	C ₁₃ (GPa)	C 22 (GPa)	С ₂₃ (GPa)	C ₃₃ (GPa)	C ₄₄ (GPa)	C ₅₅ (GPa)	C ₆₆ (GPa)	k ₁₁ (nF/m)	k 22 (nF/m)	k 33 (nF/m)	•
	SU8 ZnO	5.02 209. 71	1.42 121.1 4	1.42 105.3 6	5.02 209.7 1	1.42 105.3 6	5.02 211.1 9	1.8 42.37	1.8 42.37	1.8 44.28	0.035 4 0.075 7	0.035 4 0.075 7	0.035 4 0.090 3	0
	PVDF	3.8	1.9	1.0	3.2	0.9	1.2	0.7	0.9	0.9	0.064	0.082	0.067	0
	21-/A	140	10.2	14.2	140	14.2	131	23.4	23.4	55.9	4.072	4.072	2.08	9

*nm16@iitbbs.ac.in

¹School of Minerals, Metallurgical and Materials Engineering

Numerical Approach: Finite Element Analysis of 1-3 SU8/ZnO

120 ■ RVE1 100 ■ RVE2 ■ RVE2 ■ RVE3 ■ RVE4 ■ RVE4 ■ RVE5 ★ RVE6	tions	Condi	ndary	n Bou	niforr	atic U	Kinem	K
	Equations							operty
ZnO	$E_3 = \frac{\overline{\sigma}_{33}}{\overline{\varepsilon}_{33}}$	$w = h\varepsilon_{o}$ $\varphi = 0$	w = 0 $\varphi = 0$	$v = h\varepsilon_{22}$ $\varphi = 0$	v = 0 $\varphi = 0$	$u = h\varepsilon_{11}$ $\varphi = 0$	u = 0 $\varphi = 0$	E ₃
	$E_1 = \frac{\overline{\sigma}_{11}}{\overline{\varepsilon}_{11}}$	$w=harepsilon_{33}\ arphi=0$	w = 0 $\varphi = 0$	$v = h\varepsilon_{22}$ $\varphi = 0$	v = 0 $\varphi = 0$	$u = h\varepsilon_{o}$ $\varphi = 0$	u = 0 $\varphi = 0$	E ₁
$\begin{array}{c} \mathbf{S} \\ $	$e_{33}^{eff} = -\frac{\overline{\sigma}_{33}}{\overline{E}_3}$	w = 0 $\varphi = V_o$	$w = 0$ $\varphi = 0$	<i>v</i> = 0	<i>v</i> = 0	<i>u</i> = 0	<i>u</i> = 0	e ₃₃
	$k_{33}^{eff} = \frac{\overline{D}_3}{\overline{E}_3}$	$w = 0$ $\varphi = V_{o}$	w = 0 $\varphi = 0$	<i>v</i> = 0	<i>v</i> = 0	<i>u</i> = 0	u = 0	<i>k</i> ₃₃
Effective F								
Fig 1. Crophe she								

Semi- Analytical Technique: Mori-Tanaka Approach PVDF/PZT-7A

$$S_{MnAb} = \frac{1}{8\pi} F_{iJAb} (G_{inmj} + G_{imnj}), \quad M = 1, 2, 3$$
$$= \frac{1}{4\pi} F_{iJAb} G_{in4j}, \quad M = 4$$

$$T = [(I + S(F^{m})^{-1}(F^{f} - F^{m})]^{-1}$$

$$F^{eff} = F^{m} + v^{f} \{ (F^{f} - F^{m})T[v^{m}I + v^{f}T]^{-1} \}$$

distribution of fibers in the 1-3 composite system. However, the transverse properties do vary

The longitudinal electroelastic properties of elliptical and circular cylinder type reinforcement are exceptionally higher than ellipsoids and spherical types of reinforcements. However, the